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ABSTRACT 

We study the Euclidean Greenus functions of the ut Hooft vortex 

operator, primarily for Abelian gauge theories. The operator is 

written in terms of elementary fields, with emphasis on a form in 

which it appears as the exponential of a surface integral, We 

explore the requirement that the Greenus functions depend only on the 

boundary of this surface, The Dirac veto problem appears in a new 

guise, We present a two dimensional ''solvable model" of a Dirac 

string, which suggests a new solution of the veto problem. The 

renormalization of the Greenus functions of the Abelian Wilson loop 

and Abelian vortex operator is studied with the aid of the operator 

product expansion. In each case. an overall multiplication of the 

operator makes all Greenos functions finite; a surprising cancella= 

tion of divergences occurs with the vortex operator. We present a 

brief discussion of the relation between the nature of the vacuum and 

the cluster properties of the Green's functions of the Wilson and 

vortex operators. for a general gauge theory. The surface-like clus= 

ter property of the vortex operator in an Abelian Higgs theory is 

explored in more detail. 
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Introduction 

Mandelstam 1•
2 

and "t Hooft3 •
4 have shown that there is an 

electric/magnetic duality in the possible phases of non-Abelian gauge 

theories. A confining theory, for example, is dual to a completely 

broken Higgs theory. In the fo:rme:r, colo:r~elect:ric sources are con-

fined, while in the l?tter, colo:r~r::3gnetic sources are confined. 

Just as a confining phase is characterized by an area law for the 

Wilson loop, a complete Higgs phase can be characterized by an area 

3 law for a dual operator, the vortex operator • 

Strong :restrictions on the possible phases of gauge theories 

4 
ha·.re been obtained from this approach • These :results are essen-

tially kinematic in nature: no one has found a way to rewrite a non-

Abelian gauge theory as a simple dual field theory, and the idea of 

duality has not helped to answer the dynamical question of which 

phase is actually realized in any given non-Abelian gauge theory. 

This is in contrast to the case of U(l) and ZN gauge and generalized 

gauge theories on a lattice, which can be transforraed into dual gauge 

theories 6; this duality is often a guide to the phase structure of a 

theory. 

The results that have been obtained concerning the vortex opera-

tor are also kinematic, depending on its topological quantum number 

but not on its detailed form. In this paper we take a closer look at 

the details of the vortex operator. We deal primarily with an 

Abelian theory, leaving the complications of the non-Abelian theory 

for the future. In the next section we introduce the idea of the 

vortex operator, and express it in terms of elementary fields. 



A problem arises which is essentially the veto problem from Dirac 

monopole theory. We study a two dimensional model of a Dirac string; 

the results suggest a new solution to the Dirac veto problem. 

In section 3 we discuss the systematic expansion for the Green°S 

functions of the vortex operator. We emphasize a form for the vortex 

operator in which it appears as the exponential of a surface 

integral, and we explore the condition that the Green's functions 

depend only on the boundary of the surface. We show how the Green's 

functions are expressed neatly in terms of Wu and Yangos idea of 

"sections". In section 4 we study the renormalization of two kinds 

of Abelian "looplike" operators. the Wilson loop and the vortex 

operator. In each case the possible divergences are easily deter

mined with the aid of the operator product expansion, and for both 

operators only an overall multiplicative renormalization is needed. 

In the case of the vort2x operator this result comes about through 

cancellation of a field renormalization divergence against a compo

site operator divergence. 

In section 5 we discuss the relation between the Green's func

tions of the Wilson and vortex operators and the nature of the 

vacuum. We emphasize the cluster properties of Green's functions 

rather than the vacuum expectation value. We then show that a vortex 

operator in a massive theory always has surface-like clustering, and 

we see how this would appear from a graphical expansion. Section 6 

presents a summary and discussion of the results. 

3 



The vortex operator. like the Wilson loop, is associated with a 

closed curve in spacetime. Let us consider a general "local loop~ 

like" operator L associated with a closed curve C lying in the R3 

plane t~t , and let us consider its commutation relations with other 
0 

operators at time t • By definition, L commutes with observable 
0 

4 

~ 
(that is, gauge invariant) local operators associated with a point x 

not on c. This implies that for any gauge dependent field f(~) 

( 2. 1) 

~g . ~ 
where l(x) is i after a gauge transformation g(x) and g x) is some 

gauge transformation associated with the operator L. For instance, 

in the usual gauges (axial, covariant, Coulomb), the gauge transfer~ 

mation associated with the Wilson loop is simply 1 everywhere. 

It is important that g(~) is not defined in all of space, R3, 

but only in R
3 ~ c. R

3 
- C is multiply connected: curves are dis-

tinguished by their winding number around c. As a result there can 

be a non-trivial effect, a topology, associated with g(~). ~ As x 

~ 
describes a path around c. g(x) describes a path through the gauge 

group. If the gauge group is simply connected, there is nothing 

interesting about this, but if it is multiply connected the path may 

lie in a non~trivial element of TI
1
(G). HoCJotopy groups ffi ) are dis

n 

cussed in reference.S. For different paths of the same winding 

nuCJber, continuity requires that this element be the same. Since 

paths of winding number other than one can be generated as a product 

of paths of winding number one (traversed backwards for negative 

winding number) the homotopy class associated with winding nuCJber one 
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detercines that for any other path· The class associated with L is 

gauge invariant: since any gauge transformation can be continuously 

deformed into one which is unity in an arbitrarily large volume 

(including the whole of L) the gauge transformed g ) can be con-

tinuously deformed into its original value; homotopic invariants are 

therefore unchanged. Thus, there is a gauge invariant quantum 

number, a homotopy class. associated with any looplike operator. 

Operators for which this class is not the trivial one are called 

vortex operators. When such an operator acts on the vacuum of a com-

pletely broken Higgs theory. it produces the twisted boundary condi-

9 tions associated with the Nielsen-Olesen vortex • The operator 

creates this vertex state; hence the name. 

In an Abelian gauge theory 9 a vortex operator creates a loop of 

magnetic flux just as the Wilson operator creates a loop of electric 

flux. In the dual (Abelian) gauge theories mentioned earlier, the 

Wilson loops of one theory are mapped into vortex operators of the 

other. In the long distance. large coupling. limit of non-Abelian 

(as well as Abelian) gauge theories. the vacuum approaches an 

state of a sicple vortex operator. Thus. they are attractive opera-

tors to consider. If one tries instead to consider duality in terms 

of pointlike. monopole creation. operators. one finds that there is 

no associated topological quantum number: n
2

(G) is trivial for: any 

Lie gauge group G. -In this. there is an interesting analogy between 

electric and magnetic quantities: the paintlike operators in non-

Abelian theories (gauge fields or monopoles) have no gauge or topo-

logical invariance. while the looplike operators (wilson loops or 

vortices) do. 



The quantum number associated with a vortex can be characterized 

in a different way. Consider the path described by g(~) as ~ winds 

once around c. This path in G defines in a natural way 

(g- 1tg~g- 1tg) a path in the simply connected covering group G. hy a 

""' -> well-known connection between nl(G) and the center of G, when X 

returns to its starting position g(~) need not return to its origi-

nal value but is multiplied by an element ZL of the center of G. 

Because g (i> is "single valued, ZL in G must be mapped into 1 in G by 

the usual homomorphism. Vortex operators can thus be considered to 

have quantum numbers in Z(G)/Z(G). the quotient of the centers of the 

two groups, which is isomorphic to TI
1

(G). It also follows that if r 

is a representation single valued in G, zrL=l. where zrL is ZL in 

representation r. 

One can show from equation 2.1 that 

L{C)W (C') g ~ (C')L(C)(z )w(C,C') 
s s sL 

(2.2) 

where w(C,C') is the winding number of C' through C, and W (C') is 
s 

the Wilson loop in representation s associated with curve C' (assumed 

here to lie in the t~t hyperplane). Thus, although L(C) commutes 
0 

with every local gauge invariant not on C, if it is a vortex operator 

it will not commute with certain Wilson loops linking c. Equation 

2.2 characterizes completely the topological character of the vortex 

-> operator; it is only ZL (or z
8

L for all s), not g(x) that can be· 

defined in a gauge "invariant way. Note that equation 2. 2 is entirely 

dual between L(C} and W(C'); one cannot say that one is a topological 

operator and the other is not, until one tries to discuss gauge 

dependent quantities as in equation 2.1. The one genuine asymmetry 
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is that the Hamiltonian is relatively simple in terms of the Wilson 

loops (or the related vector potentials)~ but does not appear to have 

a simple form in terms of vortex operators& this asyml:let:ry may or may 

not be permanent. 

We illustrate these ideas for a U(l) theory. The covering group 

of U(l) is R
1

; a general eler.:~ent of R
1 

is a real number y. In the 

representation of chargee, y becomes exp(iey). A general looplike 

operator L(C) is then associated, through equation 2.1, with a func-

""""> "? Like g(x), y(x) need not be 

~ 
single-valued, but exp{iey(x)} must be if fields of e are 

is single-valued. 
~ 

It follows that when x 

"? 
winds once around C, y(x) must change by 2np/e . , where e . is the 

mJ.n nan 

unit of charge and p is any integer. Vortex operators are thus 

characteriz~d by an integer P· Equation 2·2 is now 

where W is the Wilson loop 
q 

-'l' 

W (C') = exp{i~C@dx.A.(x)} (2.4) 
q J. J. 

For those fields actually present, q is a multiple of e . and the mJ.n 

phase factor in equation 2.3 is 1. 

Differentiating equation 2.3 with respect to q and setting q=O. 

and then using Stokes's theorem to relate the line integral of ~.to 

the surface integral of the magnetic field 

(2.5) 

Although equation 2.5 refers to a coomutator directly on C9 it fol-
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lows from equation 2.3 and is therefore true for any vortex operator 

independent of its short distance details. This is the source of the 

statement that vortex operators create a loop of magnetic flux; the 

dual equation, replacing L by W • 1 by ( and 2ITp/e . by e is also 
e m1n 

true. There is no corresponding local version of equation 2.4 for a 

non-Abelian theory. Equation 2.2 might then be taken as a definition 

3 of non-Abelian magnetic flux • 

An operator satisfying equation 2.3 is 

(2.6) 

"" where Q•f• and z are cylindrical coordinates, Q is a unit vector in 

the Q direction, and j
0 

is the charge density. We take the A0~o 

gauge for convenience, but V(C) is gauge invariant and so will be its 

commutators, such as 2.1, with gauge invariant operators. :From the 

canonical commutators 

(2.7a) 

(2.7b) 

one finds 

( 2. 8a) 

~ ~ 
Vp(C)Ai(x) ""'{A

1
.(x) + iexp{-ipQ/e. }~.exp{ipQ/e. }}V (C) (2.8b) 

nan ~ m~n p 

) V (C) 
p 

(2.8c) 

This is the Abelian form of equation 2.1. The curve Cis here the 
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z-axis; g(;r) is exp[-ipQ]. """" A vortex operator for any C and any g(x) 

can be constructed in the same way. 

The coordinate Q must have a discontinuity of 2rv on a semi-

infinite surface S bounded by the z-axis (such as the half-plane 

Q=0=2rv). The exponent in the definition of V (C) is therefore 
p 

discontinuous but the operator itself has no discontinuity on the 

surface, as can be seen from its commutators. These are completely 

independent of where we choose to define the discontinuity of Q. 

Using 

V (C) can be rewritten 
p 

... 
~Q = ~ + disc(Q) 

f 

(2.9) 

"""" (x) does not vanish as an operator in the A0=0 gauge, but 

by Gauss's law it vanishes in gauge invariant Green's functions. The 

gauge invariant Green's functions are therefore the same for V (C) as 
p 

for 

2rvie v '(C) = exp{ f
5
dn.E.} 

p emin 1 1 

If one evaluates the commutator of V '(C) with 
p 

(2.10) 

tJJ(i)-f* ) [~i -ie+Ai (i) ]f(i). it does not appear to vanish on S; it 

"""" must, however. because [V (C).8(x )]~O on Sand~ is gauge invariant. 
p 

The problem is that V'(C) is too singular for canonical commutators 

to be correct; if one evaluates the GreenQs functions of V '(C)8(x) 
p 

using the methods of the next section. one finds that they have no 

equal time discontinuity on s. V Q(C) is a more convenient form of 
p 
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the operator when one is discussing Greenus functions. 

One might wonder whether the commutators 2.8 are really correct 

in field theory, even for the form 2-9. or whether some anooaly will 

develop due to the discontinuity of Q. V and V' are poorly defined 

because the discontinuity of 9 is sharp; if we define them by smear-

ing the discontinuity and taking the smearing to zero, does the lim-

iting operator satisfy 2.8? A simple example shows this to be a 

valid worry. Consider a theory with ferrnions, +. in two spacetime 

dimensions (they may even be free ferrnions). and consider the opera-

tor 

(2.11) 

where x is the spacetime point (x
0

.x
1

) and the integral runs along 

the equal time path from (x
0

,x
1

) to (x
0

,ro). From the commutator 

( 2. 12) 

we find, by the same canonical manipulations that lead from 2-7b to 

2.8a, that [~(x),+(z)]=O at equal times, so that ~(x) would be a c-

b 0 h h h d f b . 1 10 num er. n t e ot er an , rom oson equ~va ence • 

"'exp{2\Jrri)ll(x)} 

(2.13) 

If the fermions are massive. the leading piece of 7Cl+Y
5

)+ is in fact 

a c-numbe:r, but if they are massless. 7(l+Y
5

>+ has no c-number piece 
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and [~.f) is not identically zero. 

One may also see this in a different way by evaluating 

(2.!4) 

for free fermions. G(x,y,z) is poorly defined because the support in 

the exponent in equation 2.11 is too singular. If one smears the 

support (necessarily into the time direction) over a small distance A 

(call the result"ing operator ~ and the G:reenu s function GA). we can 

calculate G~(x.y.z) directly. As A goes to zero. for free massive 

ferrnions GA (x,y,z) approaches < 7(y) f(z) > times a constant, while 

for massless fermions it approaches 

times a constant. 

This is not a serious problem. By regulating ~ in a sligntly 

more cocplicated way, one may obtain the desired limit. Consider the 

operator 

where 

(2.15) 

and f~(z 0 .z 1 ) is a family of functions with support in lzl <A· If 

fA is defined so that as A~o. 

(2.16a) 

(2.16b) 



then as A~O. 7<l+Y5)+=A approaches a c-number even for massless 

fermions. If one then defines a regulated ~(x) as~ (x)=A (x), its 

limit will be a c-number. Equations 2.16 are correct for free fer-

mions or with a super-renormalizeable interaction; as one might 

12 

expect, with a Thirring interaction there would have to be different 

powers of z in the integrands. 

It is interesting to repeat some of the above analysis for the 

Schwinger model, without using bosonisation. Using Gauss's law, we 

get 

2rri 2 .:-2 
~ (x) ~ exp{- ~!d z oA (z)E(x+z)} (2.17) 

where 6~(z) is the delta function, smeared over a distance A in 

spacetime, and E, the electric field, is a (pseudo-}scalar in two 

dimensions. The analogy between this and equation 2.10 is clear. 

We would like to compare 

G(c,y) = ~ dx ~ < j
5 

(x) ~\ (y) > 
.; c P PP •f " 

(2.18) 

with the same quantity with l in place of ~. Here j
5 

is the axial 
·P 

current +Y
5

Y +and c is a spacetime curve circling the spacetime 
p 

point y at some distance large compared to A but small co~pared to 

l/e
2 

(which has dimensions of length). Because of the latter stipu-

lation, we can neglect all but the leading term from perturbation 

theory. 

Using the a~omalous divergence equation, 

~ js (x) "" - ~E(x) 
P •P .rr 

(2.19) 

we can rewrite equation 2.18 as 
e 2 

G(c,y) ~; frd x < E(x) ~ (y) > (2.20) 
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From 

(2.21) 

it follows that 

2ni c2 < E(x) ~ (y) > § ~-;- oA(x-y)~ (y)> + O(e) 

and 

2 
G(c,y) I <~ (0)> g -2 + O(e ) 

(2.22) 

(2.23) 

When~ is replaced by a c-number in 2.18 and 2.23, the ratio 2.23 is 

zero: the limit of ~ as >.. goes to zero is not a c-nur.1ber. u has 

much in cow!:lon with a Dirac string; equation 2.22 shows that there is 

a lump of flux which does not go away when>.. goes to zero. Our 

result here is that a massive fermion does not feel this flux in'the 

limit, whereas a massless ferwion does, but that a massless fermion 

can be hielded" froe~ the flux by the additional regulator 2.15. 

Hassive anJ massless bosom; appear to behave like massive fermions: 

the Green's function analogous to 2.14 goes to the free propagator in 

the limit. 

Our results for the four dimensional case are not so co!:lplete. 

We discuss them. and more of the analogy with the Dirac string. in 

the next section. 

3. Green°& Functions of Vortex Operators 

In this section we will discuss the calculation of Green"s func-

tions of the v• ). form of the vortex operator in Euclidean space-

time. For simplicity we shall assume only one charged field, scalars 

'(x) with charge e; the generalization to more fields and to fermions 
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is straightforward. We can now consider a vortex o~erator associated 

with a general closed curve in spacetime. By analogy to equation 

2.10 we define 

where S is any 2-surface whose boundary is C and +1234~1. There is 

no factor of i in the exponent because F. 4~i£. in Euclidean space-
J J 

time. To show that 3.1 is correct, we would like to check that it 

satisfies equation 2.3. and that its gauge invariant Greenus func-

tions are independent of the surface s. 

Consider now a general Green-s function of v-: 
p 

(3.2) 

where Jp• K, and L are general external sources. The expansion of v; 
invol·,res terms with arbitrarily large powers of 1/e, but owing to the 

exponential form of V'. these sum up in a convenient way: 

exp ~ 
khrnn 

1 
k!h!m!nl ( 3. 3) 

where < > indicates the connected Green·s function. The connected 
c 

k+h 
Greenus function is of order at least e · (e being the charge), 

0 except for k+h=2, m>=n=O, for which it starts at order e • Tne sum in 

~2 
3.3 therefore starts at order e • Further, the graphs contributing 
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at each order in e are readily classified: a graph with n. internal 
:l 

photon lines (internal means both ends connected to claarged lines) 

and n external lines (one end attached to a charged line and one 
e 

2n.+n 
attached to J ) is of order e 

p 
1 8

, independent of the number of 

vortex photon lines (defined as lines which run from s. the vortex 

operator. to a charged line). The connected graph with no charged 

lines (one photon line with both ends attached to S) is of order e-2• 

For example. the h=m=n~O term. which is independent of J • K. 
p 

and L. and is the only term wlaich contributes to < V ·cc.s) >. is 
p 

~ vS vS 
a -ieA (x) and A (x) is given by the graph of figure la. p p p The first 

two ter~s are from the one photon graph. The third is the sum of all 

graphs with one charged line connected to S by any number of photon 

lines. The first term is S dependent and quadratically divergent. 

We shall postpone further discussion of 3.4 until the end of this 

section. We will consider until then 11 reduced 11 Green·s functions, 

with the h""'ll""n""O term divided out. 

To investigate the dependence on S of gauge invariant reduced 

0 Green•s functions, consider first the order e term of 

< F (x) v 6 (C,S) > I < v ·(c,S) >. ~lich is equal to PP P P · 

~ Avs(x) - ~ Avs(x) ~ Fvs(x) 
P P P P PP 
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A vS was defined above; 3. 5 defines FvS as its cur 1. 
P PF 

FvS(v)~FvS' (") !!£.'!' d y F ( ) F ( ) pp "' pp "" "" 2e.J s-s • cr oc p ~ oc p Y6 < t6 Y pp x > o 

where < indicates the free propagator and ~E is the Euclidean 

scalar propagator: 

( 3· 7) 

Using the fact that a co~pletely antisymmetric 5-tensor vanishes in 

four dimensions, the quantity in square brackets can be rewritten as 

After surface integration the last two terms vanish, because s~s· has 

no boundary, while the remaining term gives, using 3.7, 

!!£. y .:4 
- ·'~'~ s,dcr ~~~ ,':\ 0 (x-y) 

e .; ;;:, - 0( r 0( rPF 

1!!E. .. y 4 
~ - '~'s 

5
,dcr 6 (x-y) 

e .; - PP 

We see that the Green's function is S-dependent, but only when x lies 

directly on s or s·. Howe·ver, when x lies on S, < F (x) V • (C,S) > 
PF P 

is not well defined due to problems of operator ordering. If we 

resolve this ordering problem by taking a limit as x approaches S, 

FvS is S independent everywhere. In effect this is taking the T-
PF 

product. whereas 3.5 defines the r*-product (the covariant r* product 

is discussed in reference 11). 

(3. 9) 

is independent of s. 



17 

Now let us go one order further, and consider 

(3.10) 

where P is some path from y to x. 0 To lowest (e ) order, this gauge 

invariant Green"s function is gi·ven by all graphs of the form shown 

in figure lb. These graphs sum up to give 

G(P,C,S) g- ~vs(y,x)exp{iefpdx" Avs(x")} 
fl fl 

12 vS Using the path integral representation for the propagator~ (y,x), 

we can write 

(3.12) 

with Dz indicating the integral over all paths z(t) such that z(O)""X 

and z(s)=y, and i is dz /dt. 
fl fl 

As long as AvS is Sr::looth (we must tem-
p 

porarily swear out the surface S) the path integral can be made 

mathematically precise (see the review article by Gelfand and 

1 
Yaglom ; at this level we simply have an external field problem and 

there are no short distance difficulties. The right hand side of 

vS 3.12 depends on A only through the phase factors 
fl 

exp{ ie§ C"'~x' flA~s (x"')} "" exp{i2eJR( C"') dcr q PT* [F~5PJ} ( 3. 13) 

where is the closed curve formed by joining P with z(t) and R{C") 

is any 2-surface whose boundary is c'. To obtain equation 3.13 we 

had to use equation 3. 1. which defines the S-dependent T*[FvsJ. we 
flf 
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cannot try to simply define this S-dependence away by replacing 

* vS v T [F ~ p] with T [F oc p] , as the result would in general depend on the 

choice of the arbitrary surface R. 

From 3. 8 and 3.13, it follows that changing the surface on which 

V ' is defined changes the phase associated with the path C' by a 
p 

factor 

(3.14) 

In four dimensions, a closed curve, C' • links a closed 2-surface, s~ 

S' • a definite, integral, number of times, N
1 

(leaving out for now 

those particle paths which actually intersect S or S0
)• Any surface 

R bounded by C' will then intersect S-Su at N
1 

points (intersections 

are defined in an oriented way. so that it is the net number of 

intersections that is countAd). Setting up local coordinate systeras 

on s-s• and on R near such an intersection, one finds that the double 

integral in 3.14 is exactly 2N
1

• The phase then changes by 

exp{2nipN
1

} under the change of surface. which is 1 if p is an 

integer as required by the earlier quantization condition. 

The above argument is extremely familiar: it is just the argu-

ment that one can have magnetic monopoles in an Abelian gauge theory, 

if the monopole charge is quantized so tl1at the charged particles 

don't "see" the monopole?s Dirac string 7 In fact, just as the Wil-

son loop can be regarded as the world-line of a classical charged 

particle. the vortex operator can be regarded as the world-line of a 

classical monopole, with the surface S as the world-sheet of the 

Dirac string. There is one problem with the Dirac string, and that 

problem is also present here: what of paths which actually pass 



through the surface S? If we smear the integral defining V u (or 
p 

that for V ) and let the smearing vanish as a limit, can we neglect 
p 

paths passing through S because they are of 11 measu.re zero'', or do 

19 

they contribute in a sufficiently singular way that their effect does 

not go away? 

This is exactly the question that was raised from a different 

point of view at the end of the last section. In our two dimensional 

model it was found, in effect, that wl1en the support of our Dirac 

string (there it was a "Dirac lump") goes to zero with the total flux 

staying constant, under soille conditions (massless fermions) the 

effect of paths through the lump survives in the limit, while under 

others (massive fermion& and bosons) the effect vanishes. Even in 

the massless fermion case it was possible to obtain the desired limit 

by adding additional regulators to the operator, which can be thought 

of as correcting the action for paths that pass through the lump. 

The four dimensional case is not so easily analyzed. For S an 

infinite 2-plane (so that C is infinitely far off in some direction) 

the charged field propagator is easily calculated with the flux 

smeared 9 and one finds that it approaches the free propagator for 

massive or massless fermion&, or for bosons. In the presence of this 

2-plane plus an additional smooth A -field, however, an argument 
p 

similar to that for the Schwinger tJodel (based on the anor.Jalous 

divergence of the axial current) shows that the effect of the Dirac 

string survives in the limit if the fermions are massless. An extra 

regulator of the same fonn as ::= in 2.17 (essentially giving the fer-

miens a mass very near the string) corrects this particular problem. 

We have not been able to show. however, that this is the only 
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additional operator needed in general, or that no correction is ever 

needed for massive fermions or bosons. It seems quite likely, how-

ever, that if we do need to correct the action for paths passing 

through the string, this correction will always take the form of 

local operators near the string. The whole point is, perhaps, moot, 

as we shall see that the Green's functions are uniquely determined 

without knowing the detailed form of the extra regulator (just as in 

the two dimensional case, we do not really need to know the form of 

~; once we know that ~ is a c-number, all of its Green's functions 

are fixed u~ to an overall constant!). 

l"lany other solutions for the Dirac veto l?roblem have been given. 

Brandt, Neri, and Zwanziger 7 have rewritten a field theory of charges 

and monopoles as an integral over all numbers and configurations of 

particle paths. They then define the action associated with confi-

gurations having charge paths intersecting n,onopole strings as the 

limit of that for non-intersecting configurations. In a monopole 

field theory, our solution would have the form of a smeared Dirac 

string and an additional non-local charge monopole interaction along 

the string. 

Hereafter we assume that V u(C,S) has been defined in such a way 
p 

as to have the desired limit, so that G(P,C,S) is independent of s. 

It then follows that there is a gauge transformation g(S,S';x), 

defined except when x lies on S or s•, such that 

flvSu (3.15a) 

(3.15b) 



21 

s vS Any gauge independent quantity constructed frorJ Av and fl is there~ 
p 

fore S-independent as well. 

At least in the present case, where there is only a classical 

vs monopole, we can evaluate quantities such as G(P,C,S) or /l (x,y) 

without using either an icit form for V ~(C,S) or the path 
p 

integral prescription. Equations 3.15 by themselves give sufficient 

information to determine the Green~& functions we want, using a 

geometrical approach (in the sense of differential geometry) due to 

14 
Wu and Yang • Consider two non-intersecting surfaces, s1 and s2, 

each having C as its boundary. Take spacetime with ~. a thin tube 

containing C, removed. Ibis space can be covered by two overlappin8 

open regions, Ql and Q2. such that S 
1 

lies entirely in q
2

• and s 
2 

vS vS 
lies entirely in Ql. A 1

(x) is defined for x in Q
1

• and A 2 (x) is 
p p 

defined for x in Q2; in the overlap region these functions are 

related by 3.15b. They are given, as before, by the simple one pho-

ton graph. and g(S
1
,s

2
;x) can be determined in terms of this graph. 

Any other gauge and S-dependent quantity can similarly be represented 

as a pair of functions (or. for Llv as four functions, since it has 

two arguments). each defined only in a certain region but related in 

the overlap region by the gauge transformation g(s
1
.s

2
;x). Gauge 

dependent quantities are thus "sections": sets of functions each 

defined only in an open region, but such that the regions cover all 

of spacetime (minus ~ in this case) and s~ch that the functions are 

related in the overlap of two or more regions. 

Integrals of gauge (and therefore S-) independent products of 

sections over R
4 

- C can then be defined: in each region the 
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integrand is defined in terms of the function which exists in that 

region; in overlap regions this is unambiz,uous because the integrand 

is $-independent. With an inner product based on this integral. DvDv 
p p 

acting on sections can be made self-adjoint. It follows that ~vas a 

section exists and is unique. ~vS can be obtained from it as a func-

tion defined everywhere except on S. Power counting arguruents, as 

developed in the next section, indicate that the limit as the cutoff 

~ is reQoved exists. at least order by order in P· 

We may now consider higher order corrections to Green's func-

tions. All graphs with a given configuration of charged lines and 

internal and external photon lines are of the same order in e; SUQ-

ming over all numbers of vortex photon lines gives one graph of the 

same configuration with no vortex photon lines but with "effective" 

propagators and vertices. The photon propagator and ~*¢A2 vertex are 

vS 
unchanged, and the charged propagator becoQeS- ~ (x,y). The ¢*¢A p 

2 vertex pickn up an extra term froQ graphs where a ~*¢A vertex is 

connected to one vortex photon line and one other photon line; it 

~vs 
becomes -ieD (x). Equation 3. 3 then becoQes 

p 

< VP'(C.S) >J,ry I < VP'(C,S) > ~ exp ~ ' 
~ hlm!n! 

hmn 
(3.16) 

where the prime on the sum excludes the term h~k=l~O and the sub-

script cvS indicates all connected graphs constructed out of the 

effective vertices and propagators. Examples of higher order correc-

tions to< A (x) V •(C,S) >I < V '(C,S) >are slw>v'D in fi8ure 2. p p p 
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It is then evident that higher order corrections to gauge 

invariant reduced Green's functions are S~independent: under a change 

* 2 of s. the phase factors from two propagators meeting at a 9 ¢A ver~ 

tex or an external source cancel; the total change in the propagators 

and vertex at a ¢*¢A vertex vanishes. Actually, this is not p 
strictly true if we have defined the vortex operator by smearing S 

and adding additional operators. The Feynman integrals in coordinate 

space include points lying ins. for which equations 3.15 do not 

hold. As in the case of the propagator, we would expect to be able 

to "repair" the Feym:~an integrals with additional corrections to the 

definition of V 0 (C,S). Again. we need never know the form of these 
p 

corrections: regarding the propagators and vertex functions as sec-

tions, the Feynman integral for each graph can be written as the 

invariant integral discussed above, and the result is unique. 

We can now demonstrate equation 2.5: 

?; T< F (x) Vp'(C,S) > "" ;, (T-T*)< F PP<x> V '(C S) > 
p PP p p • 

"" ?; (T~T$1()< F PP(x) V '(C,S) > 
~ p 0 

~ 64 V '(C,S) > (3.17) =- dy (x~y)< 
e C p p 

The first equation follows because T*(F ) is defined as 
PF 

"' R'(J T*(Ai1) and so its divergence vanishes identically. The 
PPC( r C( r 

second equality (the subscript indicates the lowest order graph, fig-

ure la) follows because any higher order graphs for the T* Green's 

function, such those of figure 2, are S~independent and therefore 

continuous when x is at S: they do not contribute to (I-T*). The 
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final equality follows from equation 3.9. Since ~ F (x)=O is true 
P PP 

as an operator equation. 3.17 represents a commutator and is in fact 

the covariant version of 2.5. Equation 2.5 is an o~erator equation 

and we have only considered one matrix element of it; the same argu-

ment can be readily applied to any gauge invariant matrix element. 

Equation 2.3 is also true. If we consider< W (C') V '(C,S) >, 
q p 

only the graph of figure 3a has a discontinuity whenever C' crosses 

S: the Green's function juops by a factor exp[Zrri:e9.]. This is the 
e 

covariant form of 2.3. Figures 3b, 3c, etc. are S-independent and 

therefore continuous at s. Equation 2.5 thus exponentiates to give 

2.3. Ordinarily this would not be true. because in general the coo-

mutators of 1 do not determine those of the Wilson loop (although 

they do in naive canonical manipulations) because graphs such as 3c 

which depend on the composite nature of W (C') have discontinuities; 
q 

this is not a problerJ here. The location of the discontinuity of 

< W (Co) V '(C,S) > does depend on S, unlike the Green's functions of 
q p 

local gauge invariants. 

For later use we would like to examine the S-dependence of 

gauge-dependent quantities. From 3.15 and the effective Feynman 

rules, it follows that 

(3.18) 

<A {x)+~(s.s';x)~ g*(s,s';x) •• g(s.s';y)¢(y) ••• 
p e p 

g*(S,S';z)¢*(z) ••• v '(C,S) >I< V '(C.S) > 
p p 

we shall also be interested in the singularities of gauge dependent 
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quantities nears. The singular behavior of A~ 5 (x). all froru figure 

la • is: 

(3.19a) 

where n1 and n2 are orthogonal unit vectors lying in S and r is the 

vector from x to the nearest point on s. FroQ 3.15b and J.l9a we 

derive 

g(S,S';x) ~ exp[ip9(x)] (3.19b) 

where Sq is any surface distant from S and x. Q(x) is defined by 

taking a 2-plane normal to S and containing x: S will intersect this 

plane in one point and Q(x) is defined as the angle around this 

point, from x to an arbitrary fixed direction in the plane. It fol

lows from J.l5a that for x near s. LlvS(x.y) is exp[-ip~(x)] times a 

non-singular function. and for y near S it is exp{ip~(y}] times a 

non-singular function. 

We have found that reduced gauge invariant Greenus functions are 

S independent, we return now to the factor that we divided out. equa-

tion 3.4. < V '(C,S) > is given by the graph with one photon start
p 

ing and ending on s. plus the sum of all vacuum bubbles constructed 

out of the effective propa,;ators antl vertices. For example. the 

determinant term in 3.4 from the graph which is just one closed 

loop of the effective propagator Llv. As discussed earlier. graphs 

constructed from the effective propagators and vertices are all S 

independent. The only S dependence is that which we have found 

explicitly. the 62(0) term. We can take this term to be an artifact 

of the way we have defined V ' when two of the fields in the expan
p 
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sion of the exponential are at the same point. and divide it out of 

the definition: all Green's functions are then S-independent. It is 

good that this term can be identified so unambiguously, so that 

artificial S dependence can be distinguished from a real, physical 

dependence of the vacuum expectation value of the vortex operator on 

the area of the r:lini:nal surface spanning c. Of the surviving terms 

in 3.4, the first is exactly the same as the leading term in the 

21T expectation value of the Wilson loop, with the replacement of for 
e 

e. The next is of a form familiar from functional integrals. In 

fact, < V •(c,S) > can be interpreted either in the normal way as a 
p 

functional integral over continuous A and ¢ fields with V "(C,S) 
p 

inserted into the integrand, or as a functional integral v.;:;_ ;:;l nc 

insertion in the integrand but with the A and ¢ fields fixed to have 
p 

the discontinuities 3.18 on s. Since we want to be careful about 

divergence problems, we will stay with the first interpretation. 

In a Higgs phase, equation 3.16 still holds; there are no extra 

terms involving tadpoles. To see this, recall that in both the sym-

metric and Higgs phase, a general connected Green's function is equal 

simply to the sum of all connected Feynwan graphs, without tadpoles 

but including graphs with "trees". By a tree we mean a piece which 

connects to no external lines and which can be separated from the 

rest of the graph by cutting a single propagator, its trunk; we do 

not mean a graph without loops. The two phases are distinbuished by 

the nature of the s.urn over all trees, which is equal to the minirnura 

of the effective potential. When we sum over all numbers of vortex 

photon lines attaching to all Feynman graphs (with trees), we get all 

graphs (including those with trees) made up of effective vertices and 



27 

propagators; this is 3.16. The sum over all trees is given by the 

minimum of the "effective potential in the presence of the vortex". 

which is obtained from the same graphs as the usual effective poten~ 

tial, but using the effective propagators and vertices. 

4. Renormalization of Loopli~e Operators 

In the preceding sections, we neglected renormalization. We did 

not specify whether quantities were bare or renormalized. we did not 

include graphs with counterterms. and we did not consider the conver~ 

gence of the various graphs. These voints are the subject of the 

present section. We include first 1 as an illustration of some of the 

ideas, a short section on the renormalization of the Wilson loop 

operator. 

4.1. Renormalization of Green's Functions of the Wilson Loop 

The Wilson loop is a composite operator involving products of 

arbitrarily many elementary fields. The associated divergences, how~ 

ever, turn out to be easily analyzed, at least in the Abelian case: 

all matrix elements can be made finite by one o·,;erall multiplication 

fl 16 17 of the operator • Gervais and Neveu and Polyakov have shown by 

the use of elegant methods that the same is true of the non-Abelian 

Wilson loop. 

A general Green's function of the Wilson operator, < We(C) >JKL' 

defined by analogy to equation 3.2. is given by 

< W (C) > "' ex p ~ 
e JKL 

khmn 

1 
( 4. 1) k!h!m!n! 
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The quantity eA (y) is invariant under renormalization, due to the 
p 

Ward identity: e A ~ e A , where subscripts r and o represent renor-
:r r o o 

malized and bare quantities, respectively. When it is necessary to 

take a particular renormalization scheme, we will use subtraction at 

zero momentum (this is acceptable when the charged fields are all 

massive, which, for simplicity, we assume). If we then take the 

fields coupled to J. K, and L to be the renormalized ones, the con-

nected Greenps functions in equation 4.1 are all renormalized: they 

are finite when not evaluated at the same spacetime point, and they 

are integrable over spacetime regions that include coincident points. 

If we take J (x), K(x), and L(x) to be smooth, the associated x 
p 

integrals all exist. 

The only possible divergence comes when k is greater than 1, so 

that there is a GJultiple integral over c. This may diverge when t"-O 

or more integrands approach each other along the loop. To emphasize 

the region in the multiple loop integral where j of the arguments 

approach each other along the loop, we represent 4.1 as 

) 
c 

(4.2) 
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where the final ellipsis in the Green·s functions indicates the 

remaining operators, coupled to external sources or to distant points 

on c. To get the leading x~O behavior of the Green's function we 

use the operator product expansion 18 to write the product of j A•s in 

the Green's function as 

g 0 y(xw
2

, ••• ,xw.)·l 
OC' • • • J 

+ g 1 v (xw
2

, • • • , xw.) •A (y 
1

) + higher operators 
OC' ••• lj-1 J p 

This form places all of the x dependence in the coefficient functions 

g .• We implicitly use a covariant gauge so as to avoid direction 
l. 

dependendent singularities, as found, for instance, in the axial 

gauge. 

At fixed x, the j points cannot be coincident• We cannot 

assmae, however, that the w-integrations converge, as there will be 

regions in integration space where some subset of the points come 

together. We will assume a coordinate-space version of Weinberg's 

19 
theorem , which we have not proved but which seews quite plausible; 

that it suffices to consider just the x-integrations for each subset 

of points, and if naive power counting indicates that every one of 

these is convergent then the whole integral will be. In fact this is 

not necessary: at least when C is an infinite straight line the 

Green's functions can be written in momentum space. Weinberg"s 

theorem and BPHZ subtraction
18 

may then be applied rigorously to ver-

ify the conclusions reached below. It is then very plausible that 

for a smooth curve C the leading divergences are the same as for the 

straight line. The coordinate-space argument is shorter and perhaps 
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more interesting. 

Because A is of dimension 1, at each order in perturbation 
p 

theory (we are renormalizing order by order) gOa' ••• y<xw) is of order 

X times logarithms and g
1 ()!'• ""P 

-·+1 
(xw) is of order x J times loga-

rithms; the higher coefficient functions are all smaller as x~O. 

The x-integration associated with the operator 1 is then linearly 

div·ergent. -1 
Performing the x integration with a distance cutoff A 

and the w integration leaving out those subregions where subsets of 

points become coincident, the c-nuiDber piece of 4.2 becomes 

(4.3) 

where R is of order A, nq(y
1

) is a unit vector tangent to C at y
1

, 

and the ellipsis in the matrix element is the same as in 4.2. If C 

were straight, it would be clear why n must appear: there is no 
q 

other available vector. For C a smooth curve, the leading divergence 

is the same as for a straight line~ since points close together don't 

see the curvature; therefore nq(y
1

) appears. To put that another 

way. curvature, the lowest dimensional measure of the actual shape of 

C, is of dimension two; its coefficient must be two powers less 

divergent than linear (that is, convergent). This argument fails if 

C has a kink, as the curvature there is infinite. In general there 

will be a composite divergence associated with a kink that is one 

power weaker than the leading divergence, from endpoint effects in 

the integration. There would therefore be an additional logarithmic 

divergence for each kink. This was also found by Gervais and 

16 
~eveu • The integral in 4.3 is simply the perimeter P(C), and so 

the divergence corresponding to the c~nuiJber in the operator product 
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expansion (which arises from graphs with no external lines) can be 

reQoved by multiplication of the Wilson loop by an overall factor 

ex p [-R (!\) P (C) J • 

The only other divergence is in the coefficient of A (x). This 
p 

is logarithmic and is given by graphs which have external lines but 

are such that cutting a single photon line separates all of the 

external lines from the Wilson loop. As one might expect, this 

divergence is ac.tually absent due to the Ward identity. In fact, in 

our particular scheme (zero momentum subtraction), 

gl Y 
(xw

2
, •••• xw.) ""G y (xw

2
, •••• xw.;O) 

0(• •• p J 0(• •• p J 
(4.4) 

where G is the j-photon Greenos function with one leg (the one with 

index p) truncated and set to zero momentuQ. G satisfies a Ward 

identity 

kG y (xw
2

, •••• xw.;k)=O p 0( • • • p J 
(4.5) 

From 4.5 and the fact that G is continuous at k =0 (for massive 
p 

charged particles) it follows that G vanishes at zero momentum. g
1 

is identically zero and that there is no divergence coming from con-

nected graphs with external lines. In fact. g
1 

can be shown to van

ish by gauge invariance in any renormalization scheme. 

We find. then. that all matrix elements of the Abelian Wilson 

loop can be made finite by one overall multiplication. 

4.2. Renormalization of Greenos Functions of the Vortex Operator 

The analysis of the vortex operator proceeds much like the 

analysis of the Wilson loop. and the result is the same: an overall 

multiplication makes all matrix elements finite. There is a 
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potential logarithmic operator divergence, as for the Wilson loop, 

but its coefficient again turns out to vanish. The vanishing is here 

more intricate, involving cancellation of field renormalization 

divergences against composite operator divergences. Our nicest 

result, that T[Fv ] is finite for an infinite straight vortex, can be 
fJP 

obtained in a few lines (equations 4.10-4.12). The rest of this sec-

tion is simply power counting to establish that this implies the 

cutoff independence of all matrix elements of vortex operators for 

any curve. 

we first must ask whether the combinations ~ and ~ appearing 
e e 

in 2.6 and 3.1 refer to the bare or the renormalized fields and 

charges, since these coJJbinations are not invariant under renormali-

zation. A canonical argument indicates that they must be bare. 

Equations 2. 7 hold only for the bare quantities; if the renontalized 

quantities were to appear on the left h.:md side of 2.7, an extra fac-

-1 tor of z
3 

would be needed on the right hand side. In order to have 

a finite corJlllutator with the Wilson loop. as in 2.3. or with charged 

fields, as in z.a. it is then clear that we must have the bare quan-

We can also reach this same conclusion from the Green's func-

tions. The discussion of the last section did not include graphs 

with counterterms. This is correct if all fields and couplings, 

including those in the definition of V ·.are the bare ones (we must 
p 

have a cutoff at this point). Otherwise, graphs with counterterms 

enter and spoil the quantization condition. The exponent in the 

definition of V • must therefore be cutoff dependent. If we had 
p 
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started by defining V Q with the renormalized quantities F and 
P r~p 

we would have found that p/Z 3• not p, was an integer, so that the 

cutoff dependence would merely be shifted into P• Either way, writ-

ing V Q in terms of cutoff independent p, e, and F gives 
P PP 

rrpz
3 = exp{--j5dcr~ PF roc p (y)} ( 4. 6) 

with an explicitly cutoff dependent exponent. Note also that this 

implies that the total coefficient (all counterterrns summed) of the 

one photon graph for < e F V '(C,S) > or for < e F V '(C,S) > 
o opp p r rpp p 

is np, with no factors of z
3

• This in turn implies that equation 

3.17, which comes entirely from the one photon graph, is correct with 

f and e either both bare or both renormalized; explicitly, 
PP 

We now investigate the cutoff dependence of the Green's func-

tions of the vortex operator. Starting with the expression ,3.3, we 

can analyze the divergences of the Green's functions very much as we 

did for the Wilson loop. There are two differences. One is that V, 

unlike w. contains a manifest cutoff dependence froo field renormali-

zation. as discussed above. The second difference is in the analysis 

of the composite divergences. where the vortex invol·,;es an integral 

over a two- rather than one-dimensional surface, and the field being 

integrated is of dimension two rather than one. Tnis second differ-

ence is small: because the exponent is dimensionless for both opera-

tors. in each case there is only a small number of divergences. The 

analog of equation 4.2 when j points cowe together is 



The small x expansion for the operator product is now 

• > 
c 
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h0 ;~ yc (xw2 , ••• ,xw.)·l 
ex r' 0 

• • • • , PF J 
(4.8) 

+ h lrxp.Y6 ••.•• 1 (xw
2

, •••• xw.)•F .1 (y
1

) 
•ffi~ J ~ 

The expansion includes only gauge invariant operators, because the 

operator product is. gauge invariant. 

~2 '+2 
h2 are of order x J • so that the x-integration for the coefficient 

of 1 is quadratically divergent, and those for the coefficients of 

F and ¢*¢ art: logarithmically divergent. 
PF 

We have neglected the extra operators in V '(C,S) that we coo
p 

eluded were needed to assure £-independence. In the two dimensional 

case, equations 2.16 indicate that the effective dimension of 

d
2

z f..\ (z) in units of mass is greater than -2 but less than -1. The 

total dimension of the exponent of :::: is then negative; it is a 11 <::>oft" 

operator. We expect that this property will hold in general. The 

inclusion of these additional operators, then, will give additional 

contributions to the coefficient functions in 4.3, but will not lead 

to any stronger singularities. 

The divergence proportional to 1 implies a common infinite fac~ 

tor of the forra e:x:p[R'(-,1\)A(S)] in every matrix eler.Jent of vp• • witi1 
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A(S) the area of the surface S, and with R& being of order A2• Just 

such a divergence was found from the one photon graph in the last 

section, where it was also shown that such a term, being explicitly S 

dependent, could not arise from any higher order graph. It can 

therefore be unambiguously divided out. The operator 1 in the expan-

sion also gives rise to a linearly divergent term proportional to the 

perimeter P(C), from edge effects in the surface integrals. This was 

also found from the one photon graph; for this divergence we would 

expect that higher order graphs will also contribute. At any rate, 

it can be divided out by a factor of the form exp [-R"'"' (A)P( ] , witll 

The logarithmic divergence from the h
1 

and h
2 

can be removed by 

the addition of three counterterms to the exponent of V •(c.s) (as in 
p 

the case of the Wilson loop. this conclusion can be verified 

rigorously by use of Weinberg"'s theorem and ilPHZ subtraction when C 

is a straight line): 

ldcr~pl appears in c3 for the same 

just jdy
1
j) appears in 4.3: there 

form for the leading divergence. 

(4.9a) 

reason that dy 1~n~ (y 1) (which is 

is no other Euclidean invariant 

The counterterm c2 is forbidden by by CP invariance. dcr ~ PF ~ p 
is CP even; as a result. so is any logarithmic composite divergence 
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(because a smooth surface is CP invariant to the extent that its cur-

vature can be neglected). while c
2 

is CP odd. c
3 

is forbidden by the 

S-independence of gauge invariant Green·s functions. The easiest way 

to see this is to consider a surface S which doubles back on itself. 

It is important that because of £-independence, there is no new com~ 

posite divergence associated with this doubling back. The doubled 

surface cancels out in the definition of vp•(c.s), because d~Jqp is 

oriented; it must therefore cancel out in any divergences. It does 

cancel in c
1 

and c
2

• but not in c
3

, as jdiJqpl is not oriented. 

conclude that all of the composite divergence can be rer:10ved by a 

term of the form fU\)·c
1

• 

There is still the second source of cutoff dependence in the 

We 

Green's functions of VP'(C,S). the factor of z
3 

in 4.6. We see that 

this is of exactly the same forill as the counterterm 4.9a; an 

appropriate choice of f (/\) can re:~ove this divergence as well, leav-

ing every Green's function of the vortex operator finite. 

Since there is only one unknown function of the cutoff, we can 

determine it by calculating one single Green's function of one par-

ticular V()rtex operator. A con·venient choice is 

T< F (x) V "(Z,Y) > I < V -(Z,Y) > 
rpp P P 

(4.10) 

By Euclidean invariance, this must be given by 

2 2 
a (X ) ~ JX + b (X ) [X 6 J ~ X 6 J) z pp(l( z.q z zp f zp p 

(4.11) 

where x is the vector from Z to x which is perpendicular to z. zp 
Under parity, V "(Z,Y) goes into V '(Z,Y'), where Y' is the half-

p p 
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plane y0~y 1 mo, y 2co (note carefully that p doesn't change sign). Th~ 

gauge invariant Green's functions of these two operators are equal. 

parity: space-space components are invariant and space-time com-

ponents change sign. Only the first term is 4.11 has natural parity; 

2 it must be that b(x )•0. Equation 3-17' then requires that 
z 

- __E_( 2)-3/2 = 2e XN 
r 

(4.12) 

Remarkably. the Green's function 4.10 is completely determined. and 

it is cutoff independent without counterterms: fU\) = 0. The factor 

of z
3 

in 4.6 provides just the cutoff dependence to cancel that in 

the CO!Jposite divergence. 

20 Equation 4.12 was found independently by s. Coleman in the 

context of the non-renormalization of the product e g where g is 
0 0 0 

the magnetic charge of an external monopole. In this context. the 

operator product argunents are a demonstration that one can in fact 

make all Green's functions evaluated in the presence of an external 

monopole finite by renormalization of the magnetic charge· 

We illustrate the cancellation with among the order e graphs. 

The order e contribution to 4.10 is figure 2a. Expanding the effec-

tive vertex and propagator in terms of the usual ones gives all 

graphs with one charged loop and no internal photons, such as those 

of figur~ 4. The graphs of figure 4a have the usual divergence;, 

ordinarily this would be cancelled by a counte:rterm from the order 

-1 e graph, figure Ia. Here, this counterterm is absent owing to the 

factor of z
3 

in 4.6. However. the graphs of figure 4b are also 

divergent when the integration over the momenta of the photons 



attached to v " is included. wbat we have found above is that the 
p 
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divergences of 4b exactly cancel those of 4a. This cancellation has 

an interesting feature: the different graphs are proportional to dif~ 

ferent powers of p, depending on how many photon lines attach to V •. 
p 

When we let p vary, the full cancellation occurs only for integral p, 

as only then can we say that the Green's function is independent of S 

and that 4.11 is the only allowed form. 

The fact that the ~atrix elements of the vortex operator turn 

out to be automatically finite is rather important. If we had had to 

add a counterterm 4.9a to the exponent of V ", its commutation rela
p 

tions 2.3 and 2.5 would then have become cutoff dependent. We hope 

to find that there are relations between the commutation relations of 

V " (that is, the fact that it is a vortex operator) and its Green's p 

functions; this would seem unlikely if cutoff independent commutators 

had been incom~atible with cutoff independent Green's functions. 

This is remeniscent of the situation with Noether currents, genera-

tors of exact symmetries: there also we wish to ascribe physical sig~ 

nificance to commutators, and there also the co!illilutators and the 

Green"s functions are simultaneously finite. 

There is one weakness in the above analysis. What we have 

really shown with the operator product analysis is that the counter-

term c
1 

suffices to remo·Je all divergences from Green's functions of 

V when they are expanded order .£y order in .E. (thus, in 4.6 we have 
p 

isolated all graphs of order pj). It would be preferable if we could 

first sum to all orders of p, getting effective propagators and ver-

tices as before, and then analyze the divergences directly frot:l the 

short distance properties of these effective propagators and 
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vertices. We do not expect that our conclusions would change; how-

ever, we shall see in the next section that an expansion of the 

Green@s functions in powers of p can sometimes lead to erroneous con-

elusions, so it would be good to have an analysis of the divergences 

which did not rely on such an expansion. Note that the finiteness of 

4.10 was independent of the expansion in P· It would also be 

interesting to see what effect hard P- or CP- violating interactions 

would have on the analysis. 
f3 

s. Cluster Properties of Looplike Qperators 

In this section we give a short discussion of the Wilson5 and 

@t Hooft 3criteria& emphasizing the idea of cluster property rather 

than vacuum expectation value. The general discussion applies to 

non-Abelian as well as Abelian theories. 

Consider the Euclidean Green•s function 

G ~C) ~ < @(x) ~ (C) > 
s c 

~ < @(x) W (C) > - < ~(x) > < W (C) > 
& s 

a a 
with @(x) some local gauge invariant operator such as F«pFys· 

(5.1) 

In 

the phases we have mentioned above~ this function will behave in one 

of three ways when C is very large: 

Short distance clustering: G(x.C) falls off exponentially with 

d(x.C). the distance between x and c. 

Surface clustering: G(x,C) is nonvanishing near the minimal sur-

face. sM. spanning c. and falls off exponentially away from that 
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£+ 
surface. 

Long distance clustering: G(x,C) falls off as a power of d(x,C). 

These alternatives may be better understood by considering a 

typical state of the system in a 3~surface cutting perpendicularly 

through c. In this 3-surface, one sees a source/antisource pair, c 

and c, where C intersects the surface. If the clustering is short 

range, there are only short range, Yukawa, fields around the sources, 

and vacuum elsewhere. If tile clustering is surface-like, there is a 

tube of non~-.racuun joining c and c, whose energy per unit length 

gives rise to a linear potential between the external sources. If 

the clustering is long range, c and c have Coulomb-like fields with a 

power law fall-off, Long range clustering is only possible if there 

are massless particles. The other two types of clustering each have 

a characteristic scale (the range of the Yukawa field or the thick-

ness of the tube) which are determined by the mass m
1 of the lightest 

particle. As m1P(C) is taken to zero, either by shrinking C or by 

letting mL go to zero. the first two cluster properties turn continu-

ously into the third. One 4light also imagine more general cluster 

properties. of course. These three, however. seem to cover all those 

which have arisen in various gauge theories and models. 

We can also consider the cluster properties of Green's functions 

of the vortex operator V (C) (p designating the homotopy class); the 
p 

same three possibilities seem to arise. The cluster property appears 

to be largely independent of the operator @(x). For instance. if a 

tube of non-vacuum runs between c and c. we would expect most local 

operators to have within the tube an expectation value different from 
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that which they have in vacuuul· It may. howe·,rer • depend on the 

representation s of the wilson loop, or the homotopy class p of the 

vortex operator. A general phase. then. may be characterized by 

which of the three cluster properties is realized for each represen-

tation and for each homotopy class. A confining theory is one in 

which the Wilson loop. at least in some representations, has surface 

clustering, as this irnpli linear conf~nement of external charges in 

th . h. . h w "1 . . 5 ose representat1ons; t ~s 1s t e ~ son cr~ter~on • The 't Hooft 

criterion defines a (completely broken) Higgs theory as one in which 

some of the vortex operators have surface clustering, as this implies 

that magnetic flux is forming into tubes. 

This classification is closely related to the usual classifies-

tion of phases in terms of the vacuum expectation values of the Wil-

son and vortex operators. For a very large curve C, the vacuum 

expectation value of a general looplike operator X(~) will be dam-

ina ted 

4 
scl m Jd X < L(x) X(C) >c I < X(C) > 

and L(x) is the Lagrangian density. The connected Green's function 

in 5.2 is a special case of 5.1. For short distance clustering the 

integrand in 5.2 will be nonzero only for x near C, so that the whole 

integral is proportional to P(C): < X(C) >follows a perimeter law. 

For surface clustering. the integrand will be nonzero only for x near 

the minimal surface, so that the whole integral is proportional to 

A(SM). In phases without massless particles, there is a one-to-one 

correspondence between an area law and surface clustering, and 

between a perimeter law and short range clustering. 
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For long range clustering. the integrand is proportional to 

k 
d(x,C) ; the behavior of the integral depends on the particular value 

of k. In QED k is -4; the integral is dominated by small values of 

d(x,C) and is proportional to P. If k were -2, the integral over 

d(x,C) diverges linearly until cut off at the linear dimension of the 

loop; the whole integral would be proportional to the square of this 

linear dimension, as it is for surface clustering. In this case 

there also be a linear potential between external sources, but 

without the formation of a flux tube. There would be, however, a 

strongly interacting massless particle, which is not observed. 

Furthermore, it is not clear that it is possible to find a consistent 

physical picture in which k is -2. 

One of ut &ooftps restrictions on the possible phases is that if 

a ~ilson loop and vortex operator do not commute (the phase z
51 

in 

2.2 is not 1) they cannot both have short range clusterin~ 3 • The key 

idea is to consider the Euclidean Green 9
S function 

< V (C,S) w (C') > 
p s 

(5.3) 

for two large curves C and c·. If both operators have short range 

clustering only • aml if C and c• are not near each other at any 

point, the Green's function 5.3 should be invariant under translation 

of c•. as this is essentially a translation through vacuuo, except 

when c• crosses S. When C' does cross S, the Green's function jumps 

by a phase due to the canonical commutator. A short four-dimensional 

argument then shows this to be inconsistent with the single-

valuedness of the Green's function; see reference 3. 't Hooft men-

tions a phase ambiguity in the Green's function 5.3; this is the fact 
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that it can change by a phase under a change of S with C and C' 

fixed. It is important that once S is fixed, the Green's function is 

not ambiguous and must be single-valued. 

Short distance clustering is analogous to that for pointlike 

fields in a massive theory, where the general connected two-point 

Green's function falls off exponentially with distance. Long dis-

tance clustering is analogous to that for pointlike fields in a mass-

less theory. Surface clustering is a new feature; it seems to arise 

when there is a flux which can neither spread nor be shielded. To 

learn more about it we shall consider a simple example of an operator 

with surface clustering, namely the vortex operator in a Higgs phase. 

In an Abelian theory without magnetic monopole fields, we can 

show that the vortex operator can never have short range clustering~ 

so that in any Abelian theory without massless particles it will ha\re 

a surface clustering and obey an area law. From 3.17' and Gauss•s 

law we find 

(5.4) 

where C is a large curve and B is a 2-sphere linking C (in four 

dimensions curves and 2-spheres link). All fielos and charges in 

this section are taken to be renormalized. The integral over b is 

independent of the radius of B· On the other hand, since the Green's 

function in 5.4 is gauge invariant, short range clustering would 

require it to fall exponentially when the radius of 8 is greater than 

m
1

; this is inconsistent with equation 5.4. 

What we have shown is quite simple: magnetic flux can 

never be shielded. If the absence of massless fields then makes it 
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impossible to have a Coul~:b field, magnetic flux can only form into 

tubes. Given that magneL: flux is confined, one can extend 't 

4 Hooftos more recent resul:; to the Abelian case to show that all 

Wilson loops must obey a porimeter law. It follows that a continuum 

Abelian theory (without m~;netic monopole fields) never confines. 

2 This result was anticipat~·-r by ~1andelstam on the basis of the 

existence of the Abelian :.:ulonb gauge. 

One might try to argu= in a different way that the Green's func-

tions of the vortex opera::r had to be short ranged in a phase 

without massless particle!· Take a large curve C, with the surface S 

far away from the minima: >urface. Consider 

< ~(x) \ '(C,S) I < V '(C,S) > 
J p 

(5.5) 

where again ~(x) is any gruge invariant operator and where x is a 

point near the minimal su::ace of C but far froQ C itself. Because 

there are no massless pa~:~cles. every Green's function in 5.5 falls 

exronentially for x distar~ from s. In particular they are vanish-

ingly small when x is on ~e minimal surface. so that surface clus-

tering is impossible. F~~her, since < 8(x) V •(c.s) > is exponen-
p c 

tialy small for x far frc: S, and also independent of S, it is 

exponentially small excep: for x near c. This is in direct disagree-

ment wi tb what was shown wove. The problem H!USt lie in the expan-

sion 5.5: while this expa1~ion is formally correct, the long distance 

behavior of the su~ is no: the same as that of the ind~Jidual terms. 

This is the source of our Hatement, at the end of the section on 



renormalization, that the expansion in powers of p is not always to 

be trusted. 

We would like to see the surface-like cluster property emerge 

from the earlier graphical expansion. Consider the value 

of the Higgs field in the presence of the vortex operator: 

vS 
f/J (x) "" < ; 

wnere ~(x) is the Higgs field, C is a large curve and S is taken, for 

convenience~ to lie far away from the minimal surface of c. In a 3-

surface which is perpendicular to C and which cuts it at two points 

we have figure 5. Near the small loop 1~ which is far from C and 

from its minimal st.u:face$ gauge invariant connected Green"'s functions 

will vanish and ~vS(x) will be position dependent but its values will 

lie in the set M of minima of the Higgs potential. For the Abelian 

theory N is the ~et of complex numbers of modulus u, where u is the 

vacuum expectation value of the Hi5gs field, but the present ar6uwent 

generalizes readily to a non-Abelian theory. 

If we have an Abelian theory, we know from 3.18 and J.l9b that 

¢"5(x) will be u•exp[ipQ] as we traverse the infinitesimal loop 1 awl 

Q goes from 0 to 2tt. On the loop 1, ¢vS(x) is seen to describe an 

element of the homotopy group n1(H) identical to the element of fl1(G) 

associated with the vortex operator. We may now imagine enlarging 

the loop, sliding it off S, taking it to the position of loop 2 and 

shrinking it to a point, without ever ~etting close to c or c. 

Because the fields are singular only at S, ;"5(x) must be essentially 

constant on loop 2: it maps out an element of the trivial hor.~otopy 

class. By definition there is no way to continuously deform an 
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element of one homotopy class into an element of another while stay

ing within N. vS It follows that, somewhere between 1 and 2, ~ (x) 

took values outside of M; this must be the case at least within a 

tube between c and c, and therefore on a surface spanning c. This is 

precisely the argument by which one shows that when the Higgs field 

at spatial infinity in two space dimensions maps out a non-trivial 

element of the homotopy group, there must be a ulump". a Nielsen-

8 g 
Olesen vortex • , somewhere in space. The tube between c and c is a 

Nielsen-Olesen vortex. 

vS Where ¢ (x) does not lie in !:1, gauge invariant connected 

Green"s functions such as that for the Higgs potential will be non-

vanishing. It follows that the vortex operator in a completely bro-

ken small coupling Higgs phase has surface clustering. This is the 

source of the "t iiooft criterion. One may also cneck, order by 

order, that the Green"s functions of the Wilson loop are short range, 

because all fields are massive. SJ!vS(x) is given by all trees whose 

trunk is a boson propagator. Each individual graph, by the earlier 

argument, has short range clustering, but the sum, as given by the 

minimum of the effective potential in the presence of the vortex, has 

surface clustering. 

6. Conclusions 

We have dealt mainly with technical aspects of the Abelian vor-

tex operator. Our two dimensional "Dirac lunp", aud our solution to 

the Dirac veto problem, are probably more amusing than they are use-

ful, at least for the present problem where the methods of Wu and 
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Yang can be used. For a field theory of electrons and monopoles. it 

may be helpful to use ideas akin to ours. as the monopole is no 

longer classical and the method of writing a monopole field theory as 

a sum over monopole paths is rather formal. 

"We have shown that the divergences of looplike cooposite opera-

tors can be analyzed in a straightforward way by use of the operator 

product expansion. We believe that any attempt to obtain equations 

of motion for looplike operators (Wilson loops or vortex operators) 

must include a careful treatment of short distance questions. along 

tl~se lines. Also, such questions as the existence of the limit in 

2 Mandels tar.1"' s construct ion of the dual IHlson loop can probably be 

analyzed with these methods. 

We eQphasized the cluster properties of looplike operators 

because they provide a more detailed physical picture than simply tl~ 

vacuuu expectation value. \~e saw two correct ways (divergence equa-

tion and tree sum) to find the surface-like cluster property in an 

Abelian Hi~gs phase, and one incorrect way {expansion in p). 
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FOOTNOT£ 

fl) I vould to 

The work 

NOTES ADDED IN PROOF 

f2) Products of the form W(C)O(x) with O(x) a local operator and 

x lying on C arise when one attempts to derive equations of motion 

for W(C). The divergences of such products may be easily analyzed 

with the methods developed here; they require counterterms having 

the form of similar products involving local operators of dimension 

less 

f3) 

than or equal to that of O(x). 

2 
The result b(x )~O may also be derived using CP~invariance 

z 

rather than P. If parity and CP are both violated by hard (dimension 4) 

interactions. a counterterm of the form c
2 

will be needed, but it can 

still be shown that c
1 

is unnecessary. The operator with finite 

Gree~'s functions is then a vortex operator times a Wilson loop of 

charge determined by the magnitude of P and CP violation. This would 

suggest that with hard P/CP violation, a theory of Dirac monopoles is 

not renormalizeable but a theory of Dirac dyons is. 

f4) R k h h 0 0 0 21,22 h h h th ecent wor on t e roug en1ng trans1t1on s ows t at w en ere 

is surface clustering the Green's function 5.1 actually spreads out over 

a distance from the minimal surface which becomes infinite when the linear 

size of the loop C becomes infinite (though the ratio of the spreading 

width to the linear size goes to zero). This occurs because the flux tube. 

though finite in thickness, fluctuates in position. The discussion 

following equation 5.2 is unaltered, as the action is proportional 

to at least the area of the minimal surface for every configuration of 

the fluctuating tube. 
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FIGUKE CAPTIONS 

1. a. The graph for AvS(x). The double line represents the 
p 

surface s. 

b. A typical graph for G(P~C?S). The curved line is the path P 

of the line integral; the straight segments are scalar propaga~ 

tors. 

2. a. The order e graph for <A (x) V '(C,S) > I < V u(C,S) >. p p p 

The heavily circled v's are effective vertices, the lightly cir-

cled v's indicate effective propagators. 

3 An order e graph for the same matrix element. 

3. a. The discontinuous graph for< V '(C,S) w (C 0
) >. The single 

p q 

heavy line represents c·. 

b. Another graph for the same Green's function. 

c. Another graph, connected to c• by three photons. 

4. Graphs in the expansion of figure 2a. 

a. The two graphs with field renorrnalization divergences. 

b. Two of the graphs which have composite divergences. 

5. The Green's function 5.6, considered in a 3-surface. c and c 

are the intersections of G with the 3-surface; s is the inter-

section of S with the 3-surface. The function J.J maps loop 1 

into a nontrivial path in M; it maps loop 2 into a tr~~ial path. 
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Figure 2 
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Figure 3 
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